Mapping Windows ACLs into
POSIX ACLs

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team
email: jra@samba.org
email: jeremy@valinux.com

Why attempt to map Windows to
POSIX ACLs in Samba ?

® \Windows administrators are used to simple ACL
controls.

® The Samba mapping of UNIX user/group/world
triple is not considered enough granularity for
Windows permissions.

® Competing SMB implementations impelment
Windows ACLs.

® |t becomes a '‘checkbox' feature, no matter how used.

® Fits with Samba philosophy of allowing OS to
control access, less user-space security policy.

POSIX ACLs - the non-standard
standard.

® Not an official POSIX standard.

® Draft standard 1003.1e revision 17 is the API
Samba standardized on.

® Differences in vendor implementations of this API
mean Samba needs a interface layer to map to
underlying OS.
® Linux - the UNIX defragmentation tool - uses 1003.1e

draft 17 as the API - so identity mapping used on
Linux.

® Implementation of ACL support in Samba has
increased pressure on ACL standardization.

POSIX ACLs

Are extension of UNIX u/g/w permissions.

Designed for simplicity. Allow additional users
and groups to have access specified to a file or

directory.

Do not extend UNIX permission model with extra
modes of access (rwx only).

Two extra features added, inheritance (for
directories) and masks.

® |Inheritance applied to files and directories alike.
® Masks override group and additional permissions.

Examining a POSIX file ACL

® Sample POSIX file ACL :

file: testfile <--- file name

owner: jeremy <--- file owner

group: users <-- POSIX group owner

user::rwx <-- perms. for file owner (standard 'user’)
user:tpot:r-x <-- perms. for extra user 'tpot’

group::r-- <-- perms. group owner (standard 'group’)
group:pcguest:r-- <-- perms. for extra group 'pcguest’

mask:rwx <-- mask 'ANDed' with groups and extra users

other:--- <-- perms. for any other user (standard 'world')

Examining a POSIX directory
ACL.

® Sample POSIX directory ACL :

file: testdir/ <-- File name

owner: jeremy <-- File owner

group: jeremy <-- POSIX group owner

user::rwx <-- perms. for directory owner (standard 'user')
group::rwx <-- perms. for group owner (standard 'group’)
mask:rwx <-- mask applied (ANDed) to group perms.
other:r-x <-- perms. for all other access (standard 'other')
default:user::rwx <-- Inherited owner perms.
default:user:tpot:rwx <-- Inherited extra perms for user tpot
default:group::r-x <-- Inherited group perms.

default:mask:rwx <-- Inherited default mask

default:other:--- <-- Inherited other perms.

POSIX ACL rules

® There are some special rules applied.

® As all POSIX creation calls specify a default mode t
(created permissions) argument, then the most
restictive set of inherited and requested permissions
IS used on creation of a filesystem object.

® \When the chmod call changes group permissions,
then the change is applied to the mask if the object
has an ACL.

® This ensures users using non ACL-aware tools don't
grant more access than they intended to users or
groups with existing ACL entries.

POSIX ACL evaluation

® A POSIX process has an associated effective
user id (euid), effective primary group id (egid),
and a list of additional groups (gid's).

® \When checking the requested access (rwx)
against an object with a POSIX ACL, the order of

evaluation is as follows :

® uid matches are made first (starting with the owner
uid). If any uid entries in the ACL match, this entry is

used for access.

® Search for any matching gid entries, if the requested
access is granted for any gid associated with the
process then allow access.

® If no other entry matches, use the "other" entry for
access.

"Overdesigned, underused and
added to NFSv4" - Win32 ACLs

® Win32 ACLs are (IMHO) a mess.

® Beautifully designed from a computing science point
of view, they are so complex to use that aimost NO
Windows administrator understands them.

® In addition, so few Win32 programmers understand
them that in practice most applications also ignore
ACLs.

® Order dependent, moving the entries within an ACL
can completely change the access decisions granted
by that ACL.

® Win32 ACLs (like most things in Win32) are a
moving target. Many changes introduced in
Windows 2000.

Deny mode semantics in POSIX

® POSIX has no "deny modes". Samba layers
these over ordinary POSIX open calls
[smbd/open.c].

® POSIX apps do not interact with DENY modes.

® Reason - what happens if someone opens
/etc/passwd with DENY ALL ?

® DENY mode semantics are not logical - adding this to
POSIX is not good design.

® Samba implements a fast, smbd to smbd

mechanism to convey deny modes between user
processes.

® No centralized deny mode daemon needed.

Samba shared memory Deny
mode database

locking/[xX] tdb in 2.2.0

in 2.0.x

Shared Memory Area
(dynamic in Samba 2.2.0 and above)

~ | Deny Read
\Rjnters as offsets

Free List
Deny Read

Open Mode Chain

Open File Hash Table
> S

\Hash table locks (sysV semaphores
or fcntl locks)

Creating Oplocks in POSIX

Allowing Oplocks on top of POSIX breaks
consistent view of filesystem (and Samba
philosophy) [smbd/oplocks.c]

® However, too useful not to implement. Needed for
SMB speed.

Deny mode database holds all shared info about
open file state. Oplock records added to this
data.

Blocking IPC mechanism between smbds
needed that would integrate into select()/poll().

UDP messages on loopback interface chosen.

Oplock communications

® On break request, smbd locks db, finds holder of
oplock, sends break request via UDP port,
releases db lock then blocks awaiting reply).

® Code in [smbd/open.c] and [smd/oplock.c] -
request_oplock break() function.

® Receiver smbd gives priority to incoming UDP
messages in select(), recurses into secondary
smbd processing loop [smbd/oplock.c].

® '"Dangerous' messages that may cause an oplock
’Per?gk from the receiving smbd dre queued at this
ime.
® On exit from recursed state, queued messages
are given priority [smbd/process.c] -
receive_message or_smb().

The swamp - mapping Win32
byte range locks to POSIX

® WIin32 byte range locks seem to be easy to map
into POSIX.

® Approach chosen in all Samba versions 2.0.x and
before.

® Depends upon locking conflicts being handled at
client redirector.

® Not possible to give exact Windows semantics.

® Samba 2.2.x and 3.0 have correct Win32
semantics.

® "Correct" here means 'what NT does'. Has little
relation to Win32 documentation or the spec.

POSIX locks - the exact
semantics

® |ock ranges can be merged/split.
® Lock ranges can be upgraded/downgraded.
® 32/64 bit signed, not unsigned ranges.

| RDIck |
| RDIck |
| RD Ick |
| Unlk |

Tin"le|RDIck| | RDIck |

Kernel view of locks

POSIX lock semantics
(continued).

® Killer issue : POSIX locks are per process, not
per file descriptor.

® Eq:

int fd1 = open("/tmp/bibble", O RDWR);
fentl(fd1, F SETLK &lock struct),
fd2 = dup(fd1);

close(fd2),

SURPRISE ! The lock you thought you had on fd1 is now gone !

In anyones wildest dreams this is not desirable behavior.

POSIX lock semantics
(continued).

® Samba 2.0.x solution to this problem was to
reference count all opens on a file onto a single
fd, open read/write (if possible).

® Conserves fd usage.
® Samba checks prohibited security overrides.

® Disadvantages are :

® Multiple opens under different uids - need to use fork()
as a procedure call to check return,

® smbd is lying to operating system about access mode.
® 2.2.0/3.0 solution - store pending closes in a tdb.
® Allows multiple opens to obey Samba philosophy.

"Welcome to Fantasy Island” :
The Win32 lock spec.

® \Win32 locks as described in Win32 docs are not
what is implemented in Windows NT.

® Locks can be downgraded by overlaying read locks
onto write locks and then doing one unlock.

® (Compatible locks can be stacked on top of each other
and are then reference counted.

® The only way Samba can implement this is with a
locking database.

® This tdb database [locking/brlock.c] implements full 64

bit Win32 lock semantics, indexed by dev/inode pairs.

® Any locks passed by this are (optionally) passed to a
POSIX lock mapping layer [locking/posix.c].

Mapping Win32 locks to POSIX

® POSIX lock layer attempts to map given 64 bit
unsigned lock onto signed (64 or 32, depending
on filesystem) bit POSIX lock.

® If no POSIX mapping possible - discard the request
(return True - POSIX app can't get to this range
anyway).
® Locks that pass are then stored in a second,
lower level tdb that contains full record of all
existent POSIX locks on a dev/inode pair.

® This is needed as POSIX kernel will lose information
when |locks are overlapped.

Mapping Win32 locks onto
POSIX (continued).

EI E EI E E Client1
[r] cient

Client2

“E E EI E E Desired result

Time

ChangeNotify and timed locks

® ChangeNotify is a problem as it is resource
intensive.

® Similar to FAM on IRIX ((kernel interface)- this is now
available on Linux.

® For portability reasons, Samba currently does a
periodic scan, with no depth.

® Produces a hash of the directory contents and checks
this in the idle loop [smbd/nttrans.c].

® Timed locks are implemented by all lock requests
being instantaneously checked with the request
packet being queued until a check succeeds in
the idle loop (or timeout) [smbd/blocking.c].

Samba DCE/RPC subsystem:
incoming

® Pipe opens are done on a IPC$ share, smbd
redirects into pipe handling code [smbd/pipes.c].

® All writes onto pipe handle are buffered into a
continuously growing (length limited) memory
buffer [rpc_server/srv_pi@e_hnd.c].
® On an authenticated RPC bind (NTLM handshake),

the user credentials are stored with the pipe
[rpCc_server/srv_pipe.c].
® As a PDU's worth of data is received, the header is

processed, stripped off (all sign & seal processing is
done here) and the incoming PDU data is appended.

® \When the complete RPC is received then the
pipe/function specific processing is invoked.

Samba DCE/RPC subsystem:
outgoing

® After successful processing of the RPC request
the outgoing data stream is marshalled into an

auto-growing buffer via [rpc_parse/parse XXX]
calls.

® \When the client does a read on the RPC pipe the
outgoing data is split into PDU sized chunks

[rpc_server/srv_pipe hnd.c] and returned as the
read data.

® Additional pipes (eg. MS-DFS pipe) can be
added into pipes tables in
[rpc_parse/parse_rpc.c] - uuid, and
[rpc_server/srv_pipe.c] - pipe function table.

Resources

® Main Samba Web site :
® http://samba.org
® Newsgroup:
® news:.comp.protocols.smb
® Samba discussion list :
® email: samba@samba.org
® Samba development list :
® email: samba-technical@samba.org

